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ABSTRACT
We propose a general formalism for galaxy biasing and apply it to methods for measuring cosmo-

logical parameters, such as regression of light versus mass, the analysis of redshift distortions, measures
involving skewness, and the cosmic virial theorem. The common linear and deterministic relation g \ bd
between the density Ñuctuation Ðelds of galaxies g and mass d is replaced by the conditional distribution
P(g o d) of these random Ðelds, smoothed at a given scale at a given time. The nonlinearity is character-
ized by the conditional mean Sg o dT 4 b(d)d, while the local scatter is represented by the conditional
variance and higher moments. The scatter arises from hidden factors a†ecting galaxy formation andp

b
2(d)

from shot noise unless it has been properly removed. For applications involving second-order local
moments, the biasing is deÐned by three natural parameters : the slope of the regression of g on d, abü
nonlinearity and a scatter The ratio of variances and the correlation coefficient r mix theseb8 , p

b
. bvar2

parameters. The nonlinearity and the scatter lead to underestimates of order and in the dif-b8 2/bü 2 p
b
2/bü 2

ferent estimators of b The nonlinear e†ects are typically smaller. Local stochasticity a†ects the(D)0.6/bü ).
redshift-distortion analysis only by limiting the useful range of scales, especially for power spectra. In this
range, for linear stochastic biasing, the analysis reduces to KaiserÏs formula for (not independentbü bvar),of the scatter. The distortion analysis is a†ected by nonlinear properties of biasing but in a weak way.
Estimates of the nontrivial features of the biasing scheme are made based on simulations and toy
models, and strategies for measuring them are discussed. They may partly explain the range of estimates
for b.
Subject headings : cosmology : theory È dark matter È galaxies : clusters : general È

galaxies : distances and redshifts È galaxies : formation È
large-scale structure of universe

1. INTRODUCTION

Galaxy ““ biasing ÏÏ clearly exists. The fact that galaxies of
di†erent types cluster di†erently (e.g., Dressler 1980 ; Lahav,
Nemiro†, & Piran 1990 ; Santiago & Strauss 1992 ; Loveday
et al. 1995 ; Hermit et al. 1996 ; Guzzo et al. 1997) implies
that not all of them are exact tracers of the underlying mass
distribution. It is obvious from the emptiness of large voids
(e.g., Kirshner et al. 1987) and the spikiness of the galaxy
distribution with D100 h~1 Mpc spacing (e.g., Broadhurst
et al. 1990), especially at high redshifts (Steidel et al. 1996,
1998), that if the structure has evolved by standard gravita-
tional instability (GI) theory then the galaxy distribution
must be biased.

Arguments for di†erent kinds of biasing schemes have
been put forward, and physical mechanisms for biasing
have been proposed (e.g., Kaiser 1984 ; Davis et al. 1985 ;
Bardeen et al. 1986 ; Dekel & Silk 1986 ; Dekel & Rees 1987 ;
Braun, Dekel, & Shapiro 1988 ; Babul & White 1991 ; Lahav
& Saslaw 1992). Cosmological simulations of galaxy forma-
tion clearly indicate galaxy biasing, even at the level of
galactic halos (e.g., Cen & Ostriker 1992 ; Kau†mann,
Nusser, & Steinmetz 1997 ; Blanton et al. 1998 ; Somerville
et al. 1999). The biasing becomes stronger at higher redshifts
(e.g., Bagla 1998a, 1998b ; Jing & Suto 1998 ; Wechsler et al.
1998).

The biasing scheme is interesting by itself as a constraint
on the process of galaxy formation, but it is of even greater
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importance in many attempts to estimate the cosmological
density parameter ). If one assumes a linear and determin-
istic biasing relation of the sort g \ bd between the density
Ñuctuations of galaxies and mass and applies the linear
approximation for gravitational instability, $ Æ ¿\[f ())d
with f ()) B )0.6 (e.g., Peebles 1980), then the observables g
and are related via the degenerate combination$ Æ ¿
b 4 f ())/b. Thus, one cannot pretend to have determined )
by measuring b without a detailed knowledge of the rele-
vant biasing scheme.

It turns out that di†erent methods lead to di†erent esti-
mates of b, sometimes from the same data themselves (for
reviews see Dekel 1994, Table 1 ; Strauss & Willick 1995,
Table 3 ; Dekel, Burstein, & White 1997 ; Dekel 1999). Most
recent estimates for optical and IRAS galaxies lie in the
range 0.4 ¹ b ¹ 1.

The methods include, for example, (1) comparisons of
local moments of g (from redshift surveys) and d (from pecu-
liar velocities) or the corresponding power spectra or corre-
lation functions, (2) linear regressions of the Ðelds g and d or
the corresponding velocity Ðelds, (3) analyses of redshift
distortions in redshift surveys, and (4) comparisons of the
cosmic microwave background dipole with the Local
Group velocity as predicted from the galaxy distribution.

In order to sharpen our determination of ) it is impor-
tant that we understand the sources for this scatter in the
estimates of b. Some of this scatter is due to the di†erent
types of galaxies involved, and some may be due to unac-
counted for e†ects of nonlinear gravity and perhaps other
sources of systematic errors in the data or the methods. In
this paper we investigate the possible contribution to this
scatter by nontrivial properties of the biasing schemeÈthe
deviations from linear biasing and the stochastic nature of
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the biasing scheme. This is done using a simple and natural
formalism for general galaxy biasing.

The biasing of density peaks in a Gaussian random Ðeld
is well formulated (e.g., Kaiser 1984 ; Bardeen et al. 1986),
and it provides a very crude theoretical framework for the
origin of galaxy density biasing. In this scheme, the galaxy-
galaxy and mass-mass correlation functions are related in
the linear regime via

mgg(r)\ b2mmm(r) , (1)

where the biasing parameter b is a constant independent of
scale r. However, a much more speciÐc linear biasing model
is often assumed in common applications, in which the local
density Ñuctuation Ðelds of galaxies and mass are assumed
to be deterministically related via the relation

g(x)\ bd(x) . (2)

Note that equation (1) follows from equation (2), but the
reverse is not true.

The deterministic linear biasing model is not a viable
model. It is based on no theoretical motivation. If b [ 1, it
must break down in deep voids because values of g below
[1 are forbidden by deÐnition. Even in the simple case of
no evolution in comoving galaxy number density, the linear
biasing relation is not preserved during the course of Ñuc-
tuation growth. Nonlinear biasing, where b varies with d, is
inevitable.

Indeed, the theoretical analysis of the biasing of collapsed
halos versus the underlying mass (Mo & White 1996), using
the extended Press-Schechter approximation (Bond et al.
1991), predicts that the biasing is nonlinear and provides a
useful approximation for its behavior as a function of scale,
time, and mass threshold. N-body simulations provide a
more accurate description of the nonlinearity of halo
biasing (see Fig. 1 ; Somerville et al. 1999) and show that the

model of Mo & White is a good approximation. We
provide more details about theoretical, numerical, and
observational constraints on the exact shape of nonlinear
biasing in ° 6, where we estimate the magnitude of nonlinear
biasing e†ects.

It is important to realize that once the biasing is nonlin-
ear at one smoothing scale, the smoothing operation acting
on the density Ðelds guarantees that the biasing at any other
smoothing scale obeys a di†erent functional form of b(d)
and is also nondeterministic. Thus, any deviation from the
simpliÐed linear biasing model must also involve both scale
dependence and scatter.

The focus of this paper is therefore on the consequences
of the stochastic properties of the biasing process, which
could either be related to the nonlinearity as mentioned
above or arise from other sources of scatter. An obvious
part of this stochasticity can be attributed to the discrete
sampling of the density Ðeld by galaxiesÈthe shot noise. In
addition, a statistical, physical scatter in the efficiency of
galaxy formation as a function of d is inevitable in any
realistic scenario. It is hard to believe that the sole property
a†ecting the efficiency of galaxy formation is the underlying
mass density at a certain smoothing scale (larger than the
scale of galaxies). For example, the random variations in the
density on smaller scales is likely to be reÑected in the effi-
ciency of galaxy formation. As another example, the local
geometry of the background structure, via the deformation
tensor, must play a role too. In this case, the three eigen-
values of the deformation tensor are relevant parameters.
Such hidden variables would show up as physical scatter in
the density-density relation. A similar scatter is noticeable
in the distribution of particular morphological types versus
the underlying total galaxy distribution (Lahav & Saslaw
1992). The hidden scatter is clearly seen for halos in simula-
tions including gravity alone (° 6 below and Fig. 1 based on
Somerville et al. 1999) even before the more complex pro-

FIG. 1.ÈBiasing of galactic halos vs. mass in a cosmological N-body simulation, demonstrating nonlinearity and stochasticity. The conditional mean
(solid curve) and scatter (error bars) are marked. The Ðelds smoothed with a top-hat window of radius 8 h~1 Mpc are plotted at the points of a uniform grid.
L eft-hand panel : At the time when (e.g., z\ 0). Right-hand panel : At an earlier time when (e.g., z\ 1). Based on Somerville et al. (1999).p8\ 0.6 p8\ 0.3
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cesses involving gasdynamics, star formation, and feedback
a†ect the biasing and, in particular, its scatter.

In practice, there are two alternative options for dealing
with the shot noise component of the scatter. In some cases
one can estimate the shot noise and try to remove it prior to
the analysis of measuring b. This is sometimes difficult, e.g.,
because of the Ðnite extent of the galaxies which introduces
anticorrelations on small scales. The shot noise is especially
large and hard to estimate in the case where the biasing
refers to light density rather than number density. The alter-
native is to treat the shot noise as an intrinsic part of the
local stochasticity of the biasing relation without trying to
separate it from the physical scatter. The formalism devel-
oped below is valid in either case.

In ° 2 we present the biasing formalism, separate the
e†ects of nonlinear biasing and stochastic biasing, and
apply the formalism to measurements involving local
second-order moments of d and g. In ° 3 we derive relations
for two-point correlation functions in the presence of local
biasing scatter. In ° 4 we apply the formalism to the analysis
of redshift distortions. In ° 5 we address methods involving
third-order moments. In ° 6 we discuss constraints on the
nonlinearity and scatter in the biasing scheme based on
simulations, simple models, and observations. In ° 7 we
summarize our conclusions and discuss our results and
future prospects. A very preliminary version of this work
has been reported by Dekel (1997).

2. LOCAL MOMENTS

2.1. Conditional Distribution
Let d(x) (4do/o) be the Ðeld of mass-density Ñuctuations

and g(x) (4dn/n) the corresponding Ðeld of galaxy-density
Ñuctuations (or, alternatively, the Ðeld of light-density Ñuc-
tuations, whose time evolution is less sensitive to galaxy
mergers). The Ðelds are both smoothed with a Ðxed smooth-
ing window, which deÐnes the term ““ local. ÏÏ The concept of
galaxy biasing is meaningful only for smoothing scales
larger than the comoving scale of individual galaxies,
namely a few Mpc. An example would thus be a top-hat
window of radius 8 h~1 Mpc, for which the rms Ñuctuation
of optical galaxies is about unity. Our analysis is conÐned to
a speciÐc smoothing scale, at a speciÐc time, and for a spe-
ciÐc type of objects.

Assume that both d and g are random Ðelds, with one-
point probability distribution functions (PDFs) P(d) and
P(g), both of zero mean by deÐnition and of standard devi-
ations p24 Sd2T and The key idea is to considerp

g
24 Sg2T.

the local biasing relation between galaxies and mass to also
be a random process, speciÐed by the biasing conditional
distribution P(g o d) of g at a given d.

Below, we shall use in several di†erent ways the following
lemma relating joint averaging and conditional averaging
for any functions p(g) and q(d) :

Sp(g)q(d)T \ SSp(g) o dT
g @ d q(d)Td , (3)

where the inner average is over the conditional distribution
of g at a given d and the outer average is over the distribu-
tion of d. This is true because

Sp(g)q(d)T \
P P

dgddP(g, d)p(g)q(d)

\
P

ddP(d)q(d)
P

dgP(g o d)p(g) , (4)

in which the Ðrst equality is by deÐnition and where for the
second equality P(g, d) has been replaced by P(g o d)P(d) and
the double integration has become successive.

2.1.1. Conditional Mean: Nonlinearity

DeÐne the mean biasing function b(d) by the conditional
mean,

b(d)d 4 Sg o dT \
P

dgP(g o d)g . (5)

This function is plotted in Figure 1. This is a natural gener-
alization of the deterministic linear biasing relation, g \

The function b(d) allows for any possible nonlinearb1 d.
biasing and fully characterizes it ; it reduces to the special
case of linear biasing when is a constant indepen-b(d) \ b1dent of d.

In the following treatment of second-order local
moments, we will Ðnd it natural to characterize the function
b(d) by the moments and deÐned bybü b8

bü 4
Sb(d)d2T

p2 , b8 2 4
Sb2(d)d2T

p2 . (6)

In the case of linear biasing they both coincide with Itb1.will be shown that the parameter is the natural gener-bü
alization of and that the ratio is the relevant measureb1 b8 /bü
of nonlinearity in the biasing relation ; it is unity for linear
biasing and is either larger or smaller than unity for nonlin-
ear biasing.

As can be seen from the deÐnitions of and thisbü b8 ,
measure is independent of the stochasticity of the biasing. It
thus allows one to maintain general nonlinearity while
addressing stochasticity.

2.1.2. Conditional Variance : Stochasticity

The local statistical character of the biasing relation can
be expressed by the conditional moments of higher order
about the mean at a given d. DeÐne the random biasing Ðeld
v by

v4 g [ Sg o dT , (7)

such that its local conditional mean vanishes by deÐnition,
Sv o dT \ 0. The local variance of v at a given d deÐnes the
biasing scatter function byp

b
(d)

p
b
2(d) 4

Sv2 o dT
p2 . (8)

The scaling by p2 is for convenience. The function Sv2 o dT1@2
is marked by error bars in Figure 1. By averaging over d
and using equation (3), one obtains the constant of local
biasing scatter,

p
b
24

Sv2T
p2 . (9)

Thus, to second order, the nonlinear and stochastic
biasing relation is characterized locally by three basic
parameters : and The parameters and refer tobü , b8 , p

b
. bü b8 /bü

the mean biasing and its nonlinearity, while measuresp
b
/bü

the scatter. This parameterization separates in a natural
way the properties of nonlinearity and stochasticity. The
formalism simply reduces to the case of linear biasing when

and to deterministic biasing whenbü \ b8 p
b
\ 0.

If the biasing conditional distribution, P(v o d), is a Gauss-
ian [still allowing b(d) and to vary with d], then thep

b
2(d)
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Ðrst- and second-order moments fully characterize the
biasing relation. In much of the following we will restrict
ourselves to second moments, but we shall see in ° 5 that a
generalization to higher biasing moments, such as the skew-
ness, is straightforward.

2.2. Variances and L inear Regression
From the basic parameters deÐned above one can derive

other useful biasing parameters. A common one is the ratio
of variances, sometimes referred to as ““ the ÏÏ biasing param-
eter,

bvar2 4
p
g
2

p2\ b8 2] p
b
2 . (10)

The second equality is an interesting result of equation (3).
It immediately shows that is sensitive both to nonlin-bvarearity and to stochasticity and that always. Notebvar º b8
the roles of and as the respective contributions ofb8 2 p

b
2

biasing nonlinearity and biasing scatter to the total scatter
in g. This makes biased compared withbvar bü ,

bvar \ bü
Ab8 2
bü 2] p

b
2

bü 2
B1@2

, (11)

by the root of the sum in quadrature of the nonlinearity
factor and the scatter factorb8 /bü p

b
/bü .

Using equation (3), the mean parameter is simplybü
related to the covariance,

büp2 \ SgdT . (12)

Thus, is the slope of the linear regression of g on d, and itbü
serves as the basic biasing parameterÈthe natural gener-
alization of the linear biasing parameter Unlike theb1.variance Sg2T in equation (10), the covariance in equation
(12) has no additional contribution from the biasing scatter
p
b
.
A complementary parameter to is the linear corre-bvarlation coefficient,

r 4
SgdT
p
g
p

\ bü

bvar
\
Ab8 2
bü 2] p

b
2

bü 2
B~1@2

. (13)

The equalities are based on equation (12) and equation (11),
respectively.

The ““ inverse ÏÏ regression, of d on g, yields another
biasing parameter :

binv 4
p
g
2

SgdT
\ bvar

r
\ bü

r2\ bvar2
bü

\ bü
Ab8 2
bü 2] p

b
2

bü 2
B

. (14)

The parameter is closer to what is measured in realitybinvby two-dimensional linear regression (e.g., Sigad et al. 1998),
because the errors in d are typically larger than in g. Note
that is biased compared with with the ratio given bybinv bü ,
the sum in quadrature of the nonlinearity factor and theb8 /bü
scatter factor p

b
/bü .

It is worthwhile to summarize the relations between the
parameters in the two degenerate cases. In the case of linear
and stochastic biasing, the above parameters reduce to

b8 \ bü \ b1 , bvar \ b1
A
1 ] p

b
2

b12
B1@2

, r \ b1
bvar

,

binv\ b1
A
1 ] p

b
2

b12
B

. (15)

Thus, b1¹ bvar ¹ binv.In the case of nonlinear and deterministic biasing they
reduce instead to

b8 D bü , p
b
\ 0 , bvar \ b8 , r \ bü

b8
, binv \ b8 2

bü
. (16)

Both and are biased with respect to and the biasbinv bvar bü ,
in is always larger. Whether they are biased high or lowbinvcompared with depends on whether the nonlinearitybü
factor is larger or smaller than unity, respectively.b8 /bü

We shall see in ° 6 that although and could signiÐ-bü b8
cantly di†er from unity and from b(d \ 0), the ratio inb8 /bü ,
realistic circumstances, typically obtains values in the range

This means that the e†ects of nonlinearity1.0¹ b8 /bü ¹ 1.1.
are likely to be relatively small.

In the fully degenerate case of linear and deterministic
biasing, all the b parameters are the same and only then
r \ 1. Note, again, that the parameters and nicelybü /b8 p

b
/b8

separate the properties of nonlinearity and stochasticity,
while the parameters r, and mix these properties.bvar, binvIn actual applications, the above local biasing parameters
are involved when the parameter b is measured from obser-
vational data in several di†erent ways. For linear and deter-
ministic biasing this parameter is deÐned unambiguously as

But any deviation from this degenerate modelb14 f ())/b1.
causes us to actually measure di†erent b parameters by the
di†erent methods.

For example, it is the parameter which isbvar 4 f ())/bvardetermined from measurements of and pf()). The formerp
gis typically determined from a redshift survey, and the latter

either from an analysis of peculiar velocity data or from the
abundance of rich clusters (with a slightly modiÐed )
dependence), or by COBE normalization of a speciÐc power
spectrum shape for mass density Ñuctuations.

As noted in equation (10), in the case of stochastic biasing
is always an overestimate of When the biasing isbvar b8 .

linear, equation (15), is an overestimate of The corre-bvar b1.sponding is thus underestimated accordingly.bvarA useful way of estimating b (e.g., Dekel et al. 1993 ;
Hudson et al. 1995 ; Sigad et al. 1998) is via the linear regres-
sion of the Ðelds in our cosmological neighborhood, e.g.,

on g(x) (or, alternatively, via a regression of the[$ Æ ¿(x)
corresponding velocities). In the mildly nonlinear regime,

is actually replaced by another function of the[$ Æ ¿(x)
peculiar velocity Ðeld and its Ðrst spatial derivatives, which
better approximates the scaled mass density Ðeld f())d(x)
(e.g., Nusser et al. 1991). The regression that is done, taking
the errors on both sides into account, is e†ectively d on g,
because the errors in (or fd) are typically more than$ Æ ¿
twice as large as the errors in g (e.g., Sigad et al. 1998).
Hence, the parameter that is being measured is close to

In the case of linear gravitational instabilitybinv4 f ())/binv.and linear deterministic biasing, the slope of this regression
line is simply Note in equation (15) that in the case ofb1.linear and stochastic biasing is an overestimate ofbinv b1.The corresponding b is thus underestimated accordingly in
this inverse regression analysis.

3. TWO-POINT CORRELATIONS

For the purpose of redshift-distortion analysis we need to
generalize our treatment of stochastic and nonlinear biasing
to deal with spatial correlations. Given the random biasing
Ðeld v, equation (7), we deÐne the two-point biasing-matter
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cross-correlation function and the biasing autocorrelation
function by

mvm(r)4 Sv1 d2T , mvv(r)4 Sv1 v2T , (17)

where the averaging is over the ensembles at points 1 and 2
separated by r. (Recall that throughout this paper the Ðelds
are assumed to be smoothed with a given window.) By the
deÐnition of the random biasing Ðeld v, and the local
scatter, equation (9), at zero lag one has andmvm(0)\ 0

We now deÐne the biasing as local ifmvv(0)\ p
b
2 p2.

mvm(r)\ 0 for any r , mvv(r)\ 0 for r [ r
b

, (18)

where is typically on the order of the original smoothingr
bscale. (Some implications of local biasing are discussed by

Scherrer & Weinberg 1998.)
A two-point equivalent lemma to equation (3) implies

that

Sg1 d2T \ SSg1d2 o d1d2Tg@dTd ,

Sg1g2T \ SSg1 g2 o d1d2Tg@dTd . (19)

Using these identities, one obtains analogous relations to
equations (12) and (10) :

mgm(r)4 Sg1d2T \ Sb(d1 )d1d2T ] mvm(r) , (20)

mgg(r)4 Sg1 g2T \ Sb(d1)d1 b(d2)d2T ] mvv(r) . (21)

In the case of linear and local biasing, these become

mgm(r)\ b1 mmm(r) , (22)

mgg(r)\ b12 mmm(r)] mvv(r),
with mvv(r)\ 0 for r [ r

b
. (23)

Note that the biasing parameter that appears here is notb1,to be confused with when the biasing is stochastic.bvarTo see how the power spectra are a†ected by the biasing
scatter, we assume, without limiting the generality of the
analysis, that the local biasing can be approximated by a
step function :

mvv(r)\
4
5
6
0
0
p
b
2 p2 r \ r

b .0 r [ r
b

(24)

Recalling that the power spectra are the Fourier transforms
of the corresponding correlation functions,

P(k)\ 4n
P
0

=
m(r)

sin (kr)
kr

r2 dr , (25)

we get for from equations (22) and (23),k > r
b
~1,

Pgm(k)\ b1Pmm(k) , (26)

Pgg(k)\ b12Pmm(k)] p
b
2 p2V

b
, (27)

where is the volume associated with the original smooth-V
bing length, We see that the local biasing scatter adds tor

b
.

an additive constant at all k-values.Pgg(k)
Finally, one can address the e†ect of the scatter on

moments of the Ðelds smoothed at a general smoothing
length Each of these moments is related to the corre-r [ r

b
.

sponding power spectrum via an integral of the form

SddT
r
\
P

d3kW3 2(kr)P(k) , (28)

where is the Fourier transform of the smoothingW3 (kr)
window of radius r. Using equation (27) one obtains for

linear biasing

p
g
2(r) \ b12 p2(r) ] p

b
2 p2(r

b
/r)3 . (29)

In the following section we will apply this formalism to the
linear analysis of redshift distortions.

For the purpose of an analysis involving nonlinear
biasing, note that two-point averages as in equations (20)
and (21) are calculable once one knows the function b(d) and
the one- and two-point distributions of the underlying
density Ðeld d. It turns out that the relation for equa-mgm,
tion (20), is in fact a simple extension of equation (12)
involving only the local moment bü :

mgm(r) \ bümmm(r) . (30)

To prove this, we use to writeP(d1, d2) \P(d2 o d1)P(d1)

Sb(d1)d1 d2T \
P

dd1P(d1)b(d1)d1
P

dd2P(d2 o d1)d2 (31)

and use the fact that To computeSd2 o d1T \ d1 mmm(r)/p2. bü
one needs to know only the function b(d) and the one-point
distribution P(d). Higher order moments, like the one in
equation (21), would, in general, involve the two-point PDF
as well.

4. REDSHIFT DISTORTIONS

A very promising way of estimating b is via redshift dis-
tortions in a redshift survey (e.g., Kaiser 1987 ; Hamilton
1992, 1993, 1995, 1997 ; Fisher et al. 1994a ; Fisher, Scharf, &
Lahav 1994 ; Heavens & Taylor 1995 ; Cole, Fisher, &
Weinberg 1995 ; Fisher & Nusser 1996 ; Lahav 1996). Pecu-
liar velocity gradients along the line of sight distort the
comoving volume elements in redshift space compared with
the corresponding volumes in real space. As a result, a
large-scale isotropic distribution of galaxies in real space is
observed as an anisotropic distribution in redshift space.
The relation between peculiar velocities and mass density
depends on ), and hence the distortions relative to the
galaxy density depend both on ) and on the galaxy biasing
relation. In the deterministic and linear biasing case, this
relation involves a single b-parameter (see Hamilton 1997).
However, in the general biasing case, the distortion analysis
is in principle complicated by the fact that the galaxies play
two di†erent roles : they serve both as luminous tracers of
the mass distribution as well as test bodies for the peculiar
velocity Ðeld.

To Ðrst order, the local galaxy density Ñuctuations in
redshift space and real space (g) are related by(g

s
) g

s
\ g

where u is the radial component of the galaxy[ Lu/Lr,
peculiar velocity Assuming no velocity biasing, linear¿(x).
GI theory predicts Lu/Lr \ [k2f ())d, where k2 is a geo-
metrical factor depending on the angle between and x.¿
Thus, the basic linear relation for redshift distortions is

g
s
\ g ] fk2d . (32)

A general local expression for redshift distortions is
obtained by taking the mean square

Sg
s
g
s
T \ SggT ] 2( fk2)SgdT ] ( fk2)2SddT . (33)

With our formalism for stochastic biasing, using equations
(10) and (12), it becomes

p
g,s2 \ p

g
2[1 ] 2( fk2)rbvar~1] ( fk2)2bvar~2] . (34)

This is similar to equation (7) of Pen (1998), in the sense that
it involves both and r in a nontrivial way and is thusbvar
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directly a†ected by the stochasticity of the biasing scheme.
However, we shall see that this is true only for the local
moments, at the original smoothing length for which bvarand r were deÐned. When the biasing is stochastic, the situ-
ation at nonzero lag is very di†erent.

4.1. General L inear Redshift Distortions at Nonzero L ag
The general linear analysis of redshift distortions involves

nonlocal analysis. The general expression in terms of corre-
lation functions is obtained straightforwardly from equa-
tion (32) by averaging over the distributions of d atSg1s g2s Ta pair of points separated by r :

mggs (r)\ mgg(r)] 2( fk2)mgm(r)] ( fk2)2mmm(r) . (35)

(Recall that our correlation functions and power spectra
correspond to the smoothed Ðelds.)

Recalling that the power spectra are the Fourier trans-
forms of the corresponding correlation functions, equation
(25), one can equivalently write

Pggs (k)\ Pgg(k)] 2( fk2)Pgm(k)] ( fk2)2Pmm(k) . (36)

(This expression can alternatively be obtained from the fact
that eqs. [33] and [28] are valid for any smoothing scale r.)

Similarly, the spherical harmonic analysis for redshift dis-
tortions in linear theory for a Ñux-limited survey (Fisher et
al. 1994b, eq. [11]) can be extended to yield for the mean
square harmonics in redshift space :

S o a
lm
s o2T \ 2

n
P

dkk2[ o(
l
(k) o2Pgg(k)

] 2 f o(
l
(k)(

l
c(k) oPgm(k)

] f 2 o(
l
c(k) o2Pmm(k)] , (37)

where is a real space window function and is a(
l
(k) (

l
c(k)

redshift-correction window function, both depending on the
selection function and the weighting function. Without
elaborating on the details, it is clear that this expression,
similar to equation (36), mixes the three di†erent power
spectra such that the ) dependence, in general, may involve
more than one unique b.

The crucial question is how to relate the correlation func-
tions, or power spectra, to the biasing scheme. In the case of
linear and deterministic biasing, one simply has Pgg \

so the distortion relation reduces tob1Pgm \ b12Pmm,
KaiserÏs formula,

Pggs \ Pgg(1] k2b1)2 , (38)

where (and here In order to obtainb14 f ())/b1 b1\ bvar).more speciÐc distortion relations for the case of stochastic
biasing, we shall use the spatial correlations from ° 3 in the
general distortion relations of the current section.

4.2. Distortions for L inear, Stochastic and L ocal Biasing
At zero lag, by deÐnition, Then, as in equa-mvv(0)\ p

b
2 p2.

tion (10) for the local moments, and themgg(0)\ bvar2 mmm(0)
general distortion relation for m, equation (35), reduces to an
equation similar to the local equation (34), in which the
second and third terms involve di†erent combinations of r
and and thus allow us to determine them separately.bvarHowever, at large separations where vanishes byr [ r

b
, mvvthe assumption of local biasing, one obtains instead, from

equations (22) and (23)

mggs (r)\ mgg(r)[1 ] 2( fk2)b1~1 ] ( fk2)2b1~2] . (39)

This is the degenerate Kaiser formula, which is very di†er-
ent from the expression for local moments, equation (34). In
particular, it is independent of the biasing scatter ! It now
involves only the mean biasing parameter (a degenerateb1combination of r and but it contains no informationbvar),on the stochasticity, In terms of the relation for m isp

b
. b1,identical to the case of deterministic biasing. Thus, the dis-

tortion analysis at is indeed incapable of evaluatingr [ r
bthe stochasticity of the process. This is a straightforward

result of the assumed locality of the biasing scheme. The
biasing scatter at two distant points is uncorrelated and
therefore its contribution to cancels out.mggOn the other hand, the redshift distortion analysis is sen-
sitive to the nonlinear properties of the biasing relation. A
proper analysis would require a nonlinear treatment of the
redshift distortions including a nonlinear generalization of
the GI relation because the nonlinear e†ects of$ Æ ¿\ [fd,
biasing and gravity enter at the same order. The result is
more complicated than equation (35) but is calculable in
principle once one knows the function b(d) and the one- and
two-point probability distribution functions of d. The insen-
sitivity to stochasticity remains valid in the case of nonlin-
ear biasing.

Back to the case of linear stochastic biasing. The distor-
tion relation for P(k) becomes more complicated because of
the additive term in equation (27). For linear biasing, when
substituting equation (27) in equation (36), the terms analo-
gous to the ones involving and in equation (39) forb1~1 b1~2
m are multiplied by a function of k. The[1[ p

b
2 p2V

b
/Pgg(k)],

distortion relation for P(k) is thus a†ected by the biasing
scatter in a complicated way.

However, if the scatter is small, there may be a k range
around the peak of P(k) where the additive scatter term in
equation (27) is small compared with the rest. In this range
the relation reduces to an expression similar to equation
(39) for the corresponding power spectra. For example, if

h~1 Mpc we have Mpc)3, whiler
b
D 8 V

b
D 2 ] 103(h~1

Mpc)3 at the peak (e.g., Kolatt & DekelPmm(k) D 104(h~1
1997), so a signiÐcant k range of this sort is viable, especially
if On the other hand, the scatter term alwaysp

b
p > b1.dominates equation (27) at small and at large k. If p

b
p D 1,

then the scatter may dominate already not much below
k D 0.01(h~1 Mpc)~1.

In terms of moments of a general smoothing length r [
using equation (29) in equation (33) one obtains a com-r

b
,

plicated distortion relation again. For small scatter there
may be a limited range of scales for which the Ðrst term in
equation (29) dominates and then the distortions reduce to
an equation similar to equation (39) for moments of
smoothed Ðelds. At large enough scales, where is risingPmmwith k and thus p2 is decreasing faster than Px~3, the
scatter becomes dominant.

Note that in order to obtain equation (7) of Pen (1998)
from the general linear distortion relation, equation (36),
one has to deÐne k-dependent biasing parameters by

and (NotePgg(k) \ bvar(k)2Pmm(k) Pgm(k) \ bvar(k)r(k)Pmm(k).
that PenÏs b refers to his which is equivalent to ourb1, bvar,except that he allows it to vary with k). In the case of local
biasing, a comparison with our equation (26) and equation
(27) yields andbvar(k)2\ b12] p

b
2 p2V

b
/Pmm(k) bvar(k)r(k)\

In the k range near the peak of where the con-b1. Pmm(k)
stant term in equation (27) may be negligible, one has

and r(k) \ 1 and there is indeed no sign of thebvar(k) \ b1stochasticity in the distortion relation.
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5. SKEWNESS AND THREE-POINT CORRELATIONS

5.1. Skewness
We now move to measures of biasing involving third-

order moments. Given the biasing random Ðelds v, deÐne
the biasing skewness function in analogy to ofS

b
(d) p

b
(d)

equation (8), by

S
b
(d)S 4 Sv3 o dT , (40)

where S 4 Sd3T. After averaging over d, the biasing skew-
ness parameter is

S
b
4 Sv3T/S . (41)

The biasing parameter that is deÐned by the ratio of skew-
ness moments is then, based on equation (3) and after some
algebra,

b334
Sg3T
Sd3T\ Sd3b3(d)T

S
] 3p2Sdb(d)p

b
2(d)T

S
] S

b
. (42)

In the case of deterministic biasing, one hasS
b
\ p

b
\ 0,

b33\ Sd3b3(d)T
S

, (43)

which di†ers from the parameters and of ° 2 because ofbü b8
nonlinear e†ects.

In the linear case where both b(d) and are constants,p
b
(d)

the expression for reduces tob3

b3\ b1
A
1 ] S

b
b13
B1@3

. (44)

Now, if then independently of If, on theS
b
\ 0, b3\ b1 p

b
.

other hand, P(g o d) is positively skewed, then b3[ b1.An interesting quantity involving the skewness and
variance of d is In the second-order approx-S3 4S/p4.
imation to GI with Gaussian initial Ñuctuations this quan-
tity is constant in time. For top-hat smoothing and a given
power spectrum of an e†ective power index n at the smooth-
ing scale, this constant is (Juszkiewicz,S3\ 34/7 [ (3] n)
Bouchet, & Colombi 1993). The corresponding quantity
involving the moments of g, provides anS3g 4Sg3T/Sg2T2,
observational measure of biasing (Weinberg 1995) :

b
S3~14

S3g
S3

\ b33
bvar4 \ Sd3b3(d)T/S ] 3p3Sdb(d)p

b
2(d)T/S ] S

b
[Sd2b2(d)T/p2 ] p

b
2]2 .

(45)

In the case of deterministic biasing,

b
S3 \Sd2b2(d)T2/p4

Sd3b3(d)T/S
. (46)

In the case of linear biasing where b(d) and are con-p
b
(d)

stants, this ratio reduces to

b
S3 \ b1

(1] p
b
2/b12)2

1 ] S
b
/b13

. (47)

The biasing parameter obtained this way thus depends both
on and If as when P(g o d) is Gaussian, thenp

b
S
b
. S

b
\ 0,

and the deviation from is evenb
S3\ b1(1 ] p

b
2/b12)2 b1larger than that of or equation (15). For positivebinv bvar,biasing skewness the parameter may in fact becomeS

b
, b

S3smaller than b1.Szapudi (1998) has shown that, under certain simplifying
assumptions, the biasing parameters (taken as two coeffi-

cients in a Taylor expansion, eq. [53]) can be determined
using three-point statistics (cumulant correlators). The
assumptions made are that the biasing is local, determin-
istic, and scale independent and that redshift distortions are
negligible. This approach should be generalized to the more
realistic case of stochastic biasing to allow other nontrivial
features in the biasing scheme.

5.2. Cosmic V irial T heorem and Energy Equation
The cosmic energy equation (CE) (Peebles 1980, ° 74 ;

Peebles 1993, eq. [20.11] ; Davis, Miller, & White 1997) can
be used to determine ) by relating the observed dispersion
of galaxy peculiar velocities to a spatial integral over the
galaxy-mass cross-correlation function, The observ-mgm(r).
able is the galaxy-galaxy autocorrelation function somgg(r),the corresponding biasing parameter is

bCE\ SggT/SgdT . (48)

At zero lag, of equation (14). At nonzero lag,bCE\ binv bCEcan be derived from equations (20) and (21). For linear
biasing, equations (22) and (23), one obtains at nonzero lag

which is di†erent from if the biasing is sto-bCE\ b1, binvchastic ; see equation (15).
The estimation of ) via the cosmic virial theorem (CV), as

applied to galaxy surveys (Peebles 1980, ° 75 ; Bartlett &
Blanchard 1996), relates the observed dispersion of galaxy-
galaxy peculiar velocities to a spatial integral over the three-
point galaxy-galaxy-mass cross-correlation function, mggm(divided by The observable is the three-point galaxymgg).correlation function so the corresponding biasingmggg,parameter is

bCV \ SgggT/SggdT . (49)

At zero lag, using equation (3),

bCV \Sd3b3(d)T ] 3p2Sdb(d)p
b
2(d)T ] S

b
S

Sd3b2(d)T ] p2Sdp
b
2(d)T

. (50)

In the case of deterministic but nonlinear biasing, bCV\
which in general di†ers from any of theSd3b3(d)T/Sd3b2(d)T,

biasing parameters discussed so far. If b(d) and arep
b
(d)

constants and the biasing is stochastic, then, at zero lag,
bCV\ b33/b12\ b1(1 ] S

b
/b13).If the analysis is done on scales smaller than the biasing

coherence length then the local expressions are relevant.r
b
,

Otherwise, one needs to appeal to three-point spatial corre-
lations.

Note that in the case of CV or CE (which are valid on
small scales) the measured quantity may be )/b or )/b2,
depending on the application, rather than b, which is typical
in applications based on the linear approximation to gravi-
tational instability.

6. CONSTRAINTS ON THE BIASING RELATION

In the scheme outlined above, the local biasing process at
given scale, time, and galaxy type, is characterized by the
conditional probability density function P(g o d). The condi-
tional mean, or the function b(d), contains the information
about the mean biasing (via the parameter and the non-bü )
linear features (e.g., via The Ðrst additional quantity ofbü /b8 ).
interest in the case of nonnegligible scatter in the biasing
relation can be the conditional standard deviation, the func-
tion and its variance over d, In order to evaluatep

b
(d), p

b
2.

the actual e†ects of nonlinear and stochastic biasing on the
various measurements of b, one should Ðrst try to constrain
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these functions or evaluate these parameters from simula-
tions, theoretical approximations, and observations.

6.1. Preliminary Results from Simulations
In an ongoing study, Somerville et al. (1999) are investi-

gating the biasing in high-resolution N-body simulations of
several cosmological scenarios, both for galactic halos and
for galaxies as identiÐed using semianalytic models. Earlier
results from simulations were obtained, e.g., by Cen &
Ostriker (1992) and in more detail by Mo & White (1996).
We refer here to an example of the preliminary results of
Somerville et al., in the context of our biasing formalism. As
our test case we use a representative cosmological model :
)\ 1 with a qCDM power spectrum which roughly obeys
the constraints from large-scale structure. The simulation
mass resolution is 2 ] 1010 inside a box of comovingM

_side 85 h~1 Mpc. The present epoch is identiÐed with the
time when the rms mass Ñuctuation in a top-hat sphere of
radius 8 h~1 Mpc is p8\ 0.6.

Figure 1 is borrowed from Somerville et al. (1999) in
order to demonstrate the qualitative features of the biasing
scheme. It shows the density Ñuctuation Ðelds of galactic
halos versus mass at the points of a uniform grid at two
di†erent times. The halos are selected above a mass thresh-
old of 2] 1012 The Ðelds are smoothed with a top-hatM

_
.

window of radius 8 h~1 Mpc. The conditional mean
[Sg o dT \ b(d)d] and the conditional scatter [Sv2 o dT \

are marked.p
b
2(d)p2]
The nonlinear behavior in the negative regime, d \ 0, is

characteristic of all masses, times, and smoothing scales : the
function Sg o dT is Ñat near g \ d \ [1, and it abruptly
steepens toward d \ 0. In the positive regime, d [ 0, the
behavior is less robustÈit strongly depends on the mass,
time, and smoothing scale. The scatter in the Ðgure includes
both shot noise and physical scatter which are hard to
separate properly. The scatter function grows rapidlyp

b
(d)

from zero at d \ [1 to a certain value near d \ 0, and it
continues to grow slowly for d [ 0 to an asymptotic value
at large d.

In the case shown at z\ 0, the nonlinear parameter is
and the scatter parameter is Theb8 2/bü 2\ 1.08 p

b
2/bü 2\ 0.15.

e†ects of stochasticity and nonlinearity in this speciÐc case
thus lead to moderate di†erences in the various measures of
b, on the order of 20%È30%. Gasdynamics and other non-
gravitational processes may extend the range of estimates
even further.

A recent hint of the origin of physical scatter in the
biasing scheme is provided by Blanton et al. (1998). They
Ðnd, based on hydrodynamic cosmological simulations,
that the local gas temperature, which is an important factor
a†ecting the efficiency of galaxy formation, is not fully cor-
related with the other dominant factorÈthe local mass
density. They therefore argue that this is a physical hidden
variable that contributes to the stochasticity proposed in
our current paper. They also detect signiÐcant scale depen-
dence in the biasing scheme and identify its main source
with the correlation of the temperature with the large-scale
gravitational potential.

6.2. Approximations for Nonlinear Biasing
Given the distribution P(d) of the matter Ñuctuations, the

biasing function b(d) should obey by deÐnition at least the
following two constraints :

1. g º [1 everywhere because the galaxy density o
gcannot be negative, and g \ [1 at d \ [1 because there

are no galaxies where there is no matter.
2. SgT \ 0 because g describes Ñuctuations about the

mean galaxy density.

An ad hoc example for a simple functional form that
automatically obeys the constraint at d \ [1 and reduces
to the linear biasing relation near d \ 0 is (e.g., Dekel et al.
1993)

Sg o dT \ c(1] d)b[ 1 . (51)

The constraint SgT \ 0 is yet to be enforced by a speciÐc
choice of the factor c as a function of the power b. With
b [ 1, this functional form indeed turns out to provide a
reasonable Ðt to the simulated halo biasing relation in the
d \ 0 regime. However, the same value of b does not neces-
sarily Ðt the biasing relation in the d [ 0 regime, which can
require either b \ 1 or b [ 1 depending on halo mass,
smoothing scale, and redshift.

A better approximation could thus be provided by a
combination of two functions like equation (51) with two
di†erent biasing parameters and in the regimesbneg bposd ¹ 0 and d [ 0, respectively. Another useful version of
such a combination is

Sg o dT \ 4
5
6
0
0

(1] b0)(1] d)bneg [ 1 d ¹ 0 ,
bpos d ] b0 d [ 0 ,

(52)

which provides an even better Ðt to the behavior in Figure
1. As mentioned above, the parameter is always largerbnegthan unity while ranges from slightly below unity tobposmuch above unity. The best Ðt to Figure 1 at z\ 0 has

and At high redshift both andbnegD 2 bposD 1. bneg bposbecome signiÐcantly larger.
The nonlinear biasing relation can alternatively be

parameterized by a general power series,

g \ ;
n/0

= b
n

n !
dn . (53)

Since g must average to zero, this power series can be
written as

Sg o dT \ b1 d ] 12 b2(d2[ p2) ] 16 b3(d3[ S)] . . . ,

(54)

where p24 Sd2T, S 4 Sd3T, etc. This determines the con-
stant term The constraint at [1 provides another rela-b0.tion between the parameters. Therefore, the expansion to
third order contains only two free parameters out of four.

In order to evaluate the parameters and for thesebü b8
nonlinear toy models, we approximate the density PDF as a
Gaussian curve, or alternatively as lognormal in o/o6 \ 1

(e.g., Coles & Jones 1991 ; Kofman et al. 1994) :] d

P(d) \ 1
[2n ln (1] p2)]1@2

1
(1] d)

] exp[ [ln (1] d) [ ln (1] p2)~1@2]2
2 ln (1] p2) . (55)

The only free parameter is p. The skewness, for example, is
S \ 2p4] p6, etc.

For the nonlinear biasing that is described by Taylor
expansion to third order (eq. [54]) and a Gaussian or log-
normal density PDF, assuming and p > 1, oneb2> b1
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obtains

b8 2
bü 2^ 1 ] 1

2
Ab2
b1

B2
p2 . (56)

This is always larger than unity, but the deviation is small.
Alternatively, using the functional form of equation (51),
with ranging from 1 to 5, ranging from 0.5 to 3, andbneg bposa lognormal PDF of p \ 0.7, we Ðnd numerically that isb8 /bü
in the range 1.0 to 1.15. These two toy models, which
approximate the nonlinear biasing behavior seen for halos
in the N-body simulations, indicate that despite the obvious
nonlinearity, especially in the negative regime, the nonlinear
parameter is typically only slightly larger than unity.b8 /bü
This means that the e†ects of nonlinear biasing on measure-
ments of b are likely to be relatively small.

6.3. T he Special Case of Gaussian Biasing
A quick comment on ““Gaussian ÏÏ and ““ bivariate

Gaussian ÏÏ biasing, which has been used in the recent liter-
ature (e.g., Pen 1998). A speciÐc model for nonlinear and
stochastic biasing is where the conditional distribution is a
Gaussian curve, but allowing b(d) and to vary with d :p

b
2(d)

P(g o d)P exp [ [g [ b(d)d]2
2p2p

b
2(d)

. (57)

Based on the N-body simulations, this is a reasonable
approximation for galactic halos.

However, the model of bivariate Gaussian biasing, which
might be tempting because it makes some of the computa-
tions easier, is much more restrictive ; it is in fact a special
case of linear biasing. This model assumes that the joint
distribution of galaxies and mass is a two-dimensional
Gaussian curve,

P(g8 , d8 )P exp[ g8 2[ 2rg8 d8 ] d8 2
2(1 [ r2) , (58)

where and and with the local biasingg8 4 g/p
g

d8 4 d/p,
correlation coefficient r \ const.

If P(d) is also a Gaussian curve, theP(d8 )P exp ( [ d8 2/2),
conditional probability is

P(g8 o d8 )\P(g8 , d8 )
P(d8 )

P exp[ (g8 [ rd8 )2
2(1 [ r2) . (59)

This is a one-dimensional Gaussian for with mean andg8 , rd8
variance (1[ r2). Back to the quantities g and d, the condi-
tional mean is where as usual.Sg o dT \ rbvar d, bvar \ p

g
/p

This is thus a special case of linear biasing, with a constant
linear biasing parameter independent of d, as inb1\ rbvarequation (15). From the conditional variance of the Gauss-
ian distribution in equation (59), the biasing scatter is also a
constant independent of d, Based onp

b
2\ bvar2 (1 [ r2).

N-body simulations, linear biasing could be a poor approx-
imation even for galactic halos. The whole biasing scheme is
characterized in this case by only two parameters, andbvarr, or alternatively and independent of d.b1 p

b
,

6.4. Observations
Direct constraints on the local biasing Ðeld should, in

principle, be provided by the data themselves, of galaxy
density (e.g., from redshift surveys) versus mass density (e.g.,
from peculiar velocity surveys, or gravitational lensing). It is
a bit early to deduce the nonlinear shape of b(d) from these
data because of the large errors that they involve at present.
However, we note a qualitative example of scatter in the

biasing relation in the fact that the smoothed density peaks
of the Great Attractor (GA) and Perseus Pisces (PP) are of
comparable height in the mass distribution as recovered by
POTENT from observed velocities (e.g., Dekel 1994 ;
daCosta et al. 1996 ; Dekel et al. 1999), but PP is signiÐ-
cantly higher than GA in the galaxy map (e.g., Hudson et al.
1995 ; Sigad et al. 1998). For example, a linear regression of
the 12 h~1 Mpc smoothed density Ðelds of POTENT mass
and optical galaxies in our cosmological neighborhood
yields a s2D 2 per degree of freedom for the assumed errors
in the data (Hudson et al. 1995). One way to obtain a
s2D 1, as desired, is to assume a biasing scatter of p

b
D 0.5

in the optical density (while p D 0.3 at that smoothing).
With one has This is only a very crudeb1D 1, p

b
2/b12D 0.25.

estimate, and there is yet much to be done along similar
lines with future data.

A promising method has been worked out (Sigad &
Dekel 1999 ; see also Dekel 1998) for recovering the mean
biasing function b(d) and its associated parameters andbü b8
from a measured PDF (or counts in cells) of galaxies in a
redshift survey. If g(d) were deterministic and monotonic,
then it could be derived from the cumulative PDFs of gal-
axies and mass, and C(d), via (seeC

g
(g) g(d) \ C

g
~1[C(d)]

also Narayanan & Weinberg 1998). It is found for halos in
N-body simulations that this is a good approximation for
Sg o dT despite the scatter. The other key point conÐrmed by
a suite of simulations is that C(d) is relatively insensitive to
the cosmological model or the Ñuctuation power spectrum
and can be approximated for our purpose by a lognormal
distribution in 1 ] d (e.g., Bernardeau 1994 ; Bernardeau &
Kofman 1995). Thus, b(d) can be evaluated from a measured

and the rms p of mass Ñuctuations on the sameC
g
(g)

smoothing scale. Since redshift surveys are by far richer
than peculiar velocity samples, this method will allow a
better handle on b(d) than the local comparison of density
Ðelds of galaxies and mass. It can be applied to local redshift
surveys as well as surveys of objects at high redshift.

Constraints on the biasing scheme can also be obtained
by comparing the clustering properties of galaxies of di†er-
ent types in a given redshift surveys (e.g., Lahav & Saslaw
1992). Indeed, partly motivated by the ideas of our current
paper, a clear conÐrmation for nontrivial biasing, nonlinear
and/or stochastic beyond shot noise, has recently been
reported by Tegmark & Bromley (1998) based on the Las
Campanas Redshift Survey.

7. CONCLUSIONS

We have introduced a straightforward formalism for
describing the biasing relation between the density Ñuctua-
tion Ðelds of galaxies and mass, based on the conditional
probability function P(g o d). The key feature of this formal-
ism is the natural separation between nonlinear and sto-
chastic e†ects in the biasing scheme. The nonlinearity is
expressed by the conditional mean via the function b(d), and
the statistical scatter is measured by the conditional stan-
dard deviation, and higher moments if necessary. Forp

b
(d),

analyses using local moments of second order, the biasing
scheme is characterized by three parameters : measuringbü
the mean biasing, measuring the e†ect of nonlinearity,b8 /bü
and measuring the e†ect of stochasticity.p

b
/bü

Deviations from linear and deterministic biasing typically
result in biased estimates of the biasing parameter, or the
parameter b (D)0.6/b), which depend on the actual method
of measurement. The nonlinearity and the scatter lead to
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di†erences of order and respectively, in the dif-b8 2/bü 2 p
b
2/bü 2,

ferent estimators of b using second-order local moments.
They typically lead to an underestimate of b with respect to

Based on N-body simulations and toy models,bü \ f ())/bü .
the e†ects of nonlinear biasing are typically small, on the
order of 20% or less, and the e†ects of scatter could be
somewhat larger. One expects the b parameters from
second-order local moments to be biased in the following
order : binv \bvar \ bü .

The stochasticity a†ects the redshift-distortion analysis
only by limiting the useful range of scales, especially in the
analysis involving power spectra. In this range, for linear
stochastic biasing, the basic linear expression reduces to the
simple Kaiser formula for (not and itb(d)\ bü \ b1 bvar),does not involve the scatter at all. The distortion analysis is
in principle sensitive to the nonlinear properties of biasing,
but the nonlinear e†ects, especially at low redshifts, are
expected to be weak, and on the same order as the e†ects of
nonlinear gravitational instability. This is good news for the
prospects of measuring an unbiased b from redshift distor-
tions in the large redshift surveys of the near future (Two
Degree Field and Sloan Digital Sky Survey). A detailed
nonlinear analysis of redshift distortions with nonlinear
biasing will be reported in a subsequent paper.

More detailed studies of simulations, including di†erent
recipes for galaxy formation, are required in order to con-
strain the parameters of the biasing formalism more accu-
rately. The analysis could also be extended to include
nonlocal biasing, using the biasing correlations as deÐned
here.

The study of stochastic and nonlinear biasing should be
extended to address the time evolution of biasing because
many relevant measurements of galaxy clustering are now
being done at high redshifts. As seen in Figure 1, the biasing
is clearly a function of cosmological epoch (e.g., M. Rees
1999, private communication ; Dekel & Rees 1987 ; Mo &
White 1996 ; Steidel et al. 1996, 1998 ; Bagla 1998a, 1998b ;
Matarrese et al. 1997 ; Wechsler et al. 1998 ; Peacock 1998).
In particular, if galaxy formation is limited to a given epoch
and the biasing is linear, one can show (e.g., Fry 1996) that

the linear biasing factor would eventually approachb1unity as a simple result of the continuity equation. Tegmark
& Peebles (1998) have generalized the analytic study of time
evolution to the case of stochastic but still linear biasing
and showed how and r approach unity in this case.bvarAnalytic attempts to study the evolution of mildly nonlinear
stochastic biasing have been reported recently (Taruya,
Koyama, & Soda 1998 ; Taruya & Soda 1998 ; Catelan et al.
1998 ; Catelan, Matarrese, & Porciani 1998 ; Sheth &
Lemson 1998). These studies can be extended to the general
nonlinear case using our formalism. The simulations of
Somerville et al. (1998) are aimed at this goal.

More accurate measurements of peculiar velocities in our
greater cosmological neighborhood, and careful compari-
sons with the galaxy distribution, promise to allow
improved observational estimates of the biasing scatter in
the future. The reconstruction of the large-scale mass dis-
tribution based on weak gravitational lensing (Van Waer-
beke 1998, 1999 ; Schneider 1998 ; Kaiser et al. 1998) is also
becoming promising for this purpose.

The main moral of this paper is that in order to put any
measurement of b in cosmological perspective, and in par-
ticular when trying to use it for an accurate measurement of
the cosmological parameter ), one should consider the
e†ects of nonlinear and stochastic biasing and the associ-
ated complications of scale dependence, time dependence,
and type dependence. The current di†erent estimates are
expected to span a range of D30% in b because of stochas-
tic and nonlinear biasing. The analysis of redshift distor-
tions seems to be most promising ; once it is limited to the
appropriate range of scales, the analysis is independent of
stochasticity and the nonlinear e†ects are expected to be
relatively small.
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tion grant 95-00330 and by the Israel Science Foundation
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